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A general type of nonlinear Fokker-Planck equation is derived directly from a master equation, by introduc-
ing generalized transition rates. The H theorem is demonstrated for systems that follow those classes of
nonlinear Fokker-Planck equations, in the presence of an external potential. For that, a relation involving terms
of Fokker-Planck equations and general entropic forms is proposed. It is shown that, at equilibrium, this
relation is equivalent to the maximum-entropy principle. Families of Fokker-Planck equations may be related
to a single type of entropy, and so, the correspondence between well-known entropic forms and their associated
Fokker-Planck equations is explored. It is shown that the Boltzmann-Gibbs entropy, apart from its connection
with the standard—linear Fokker-Planck equation—may be also related to a family of nonlinear Fokker-Planck
equations.
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I. INTRODUCTION

It is well known that many real systems exhibit a dynami-
cal behavior that falls out of the scope of the standard linear
differential equations of physics. Although the linear Fokker-
Planck equation �FPE� �1� is considered appropriate for the
description of a wide variety of physical phenomena—
typically those associated with normal diffusion—it is well
accepted that this equation is not adequate for describing
anomalous diffusion. An example consists of particle trans-
port in disordered media �2�, such as amorphous materials, or
some other kind of media containing impurities and/or de-
fects. In such systems, particles are driven by highly irregu-
lar forces, which lead to transport coefficients that may vary
locally in a nontrivial manner. In addition to those, various
other phenomena fall out of the scope of the linear FPE, such
as surface growth �3�, diffusion of micelles in salted water
�4�, polytropic distributions of self-gravitating stellar systems
�5�, the heartbeat histograms in a healthy individual �6�, re-
laxation of two-dimensional turbulence in a pure-electron
plasma �7�, anomalous diffusion in an optical lattice �8�, and
black-hole radiation �9�. These kinds of phenomena became
one of the most investigated topics in physics nowadays,
leading to many interesting new aspects and to a wide range
of open problems.

In order to cope with such anomalous systems, modifica-
tions in the linear FPE have been carried out, and this subject
has attracted the attention of many researchers recently. Es-
sentially, there are two alternatives for introducing modifica-
tions in the linear FPE: �i� a procedure that leads to the
fractional FPE �see Ref. �10� for a review�, where one con-
siders a linear theory with nonlocal operators carrying the
anomalous nature of the process; �ii� the nonlinear FPEs �11�
that in most of the cases come out as simple phenomenologi-
cal generalizations of the standard linear FPE �12–20�. Re-
cently, it has been shown that nonlinear FPEs may be derived
directly from a standard master equation, by introducing

nonlinear effects on its associated transition probabilities
�21–23�.

The nonextensive statistical mechanics formalism has
emerged naturally as a strong candidate for dealing appropri-
ately with many real systems that are not satisfactorily de-
scribed within standard �extensive� statistical mechanics
�24–26�. The powerlike probability distribution that maxi-
mizes the entropy proposed by Tsallis �27–29� is very often
found as a solution of nonlinear FPEs �12–16,18�, suggesting
that the nonextensive statistical mechanics formalism should
be intimately related to nonlinear FPEs. In what concerns
thermodynamics, one requires the extensivity of the entropy;
however, there are several examples in the literature for
which the Boltzmann-Gibbs entropy is not extensive �26,30�,
including quantum spin systems �31,32�. This suggests the
utility of alternative entropic forms that may be, in certain
cases, extensive.

Many important equations and properties of standard sta-
tistical mechanics have been extended within the formalism
of nonextensive statistical mechanics. An example is the H
theorem, which was shown to be valid, taking into account
certain restrictions on the parameters of the corresponding
entropic form �11,18,33–35�. Usually, one proves the H theo-
rem by defining previously an entropic form, and then con-
sidering either the master equation or a FPE, when dealing
with the time derivative of the probability distribution.

The main motivation of this paper is to prove the H theo-
rem for a system in the presence of an external potential and
following a general type of nonlinear FPE. In order to
achieve this, we introduce a relation involving quantities of
the FPE with an entropic form; in principle, one may have
classes of Fokker-Planck equations associated with a single
entropic form. We show that, when considered at equilib-
rium, this relation is equivalent to the maximum-entropy
principle. In the next section we derive a general FPE di-
rectly from a master equation by introducing nonlinear terms
in its transition probabilities; such a FPE will be used
throughout most of this paper. In Sec. III we prove the H
theorem by using this FPE, and show that the validity of this
theorem requires a relation involving a general entropic form
and the parameters of this nonlinear FPE. In Sec. IV we
discuss particular cases of this FPE and their associated en-
tropic forms. In Sec. V we introduce a modified FPE that is
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compatible with the definition of a “generalized internal en-
ergy,” as used within the context of nonextensive statistical
mechanics. The same relation introduced previously is also
necessary in this case, in order to prove the H theorem. Fi-
nally, in Sec. VI we present our conclusions.

II. DERIVATION OF THE NONLINEAR FOKKER-
PLANCK EQUATION FROM A MASTER EQUATION

In this section we will derive, directly from the master
equation, the nonlinear FPE that will be investigated
throughout most of the present paper; we will follow closely
the approach used in Refs. �21,22�. Let us then consider the
standard master equation, associated with a discrete spec-
trum,

�P�n,t�
�t

= �
m=−�

�

�P�m,t�wm,n�t� − P�n,t�wn,m�t�� , �2.1�

with P�n , t� representing the probability for finding a given
system in a state characterized by a variable n, at time t. We
introduce nonlinearities in the system through the following
transition rates:

wk,l��� = −
1

�
�k,l+1A�k�� a�P�k�,t��

+
1

�2 ��k,l+1 + �k,l−1� ��P�k�,t�,R�l�,t�� . �2.2�

In the equation above, A�k�� represents an external dimen-
sionless force, a�P� is a functional of the probability P�n , t�,
whereas the functional ��P ,R� depends on two probabilities,
P and R, that are associated with two different states, al-
though R�k� , t�� P�k� , t�. Substituting this transition rate in
Eq. �2.1�, performing the sums, and defining x=k�, one gets

�P�x,t�
�t

= −
1

�
�P�x + �,t�A�x + ��a�P�x + �,t��

− P�x,t�A�x�a�P�x,t���

+
1

�2 �P�x + �,t���P�x + �,t�,R�x,t��

+ P�x − �,t���P�x − �,t�,R�x,t��� −
1

�2 P�x,t�

����P�x,t�,R�x + �,t�� + ��P�x,t�,R�x − �,t��� .

�2.3�

The quantities depending on � may be expanded for small �,
e.g.,

��P�x,t�,R�x ± �,t�� = 	��P�x,t�,R�x,t�� + 
±�
�R�x,t�

�x

+
�2

2

�2R�x,t�
�x2 � ���P,R�

�R

+
�2

2

 �R�x,t�

�x
�2�2��P,R�

�R2 + ¯�
R=P

,

�2.4�

in such a way that considering the limit �→0, one gets the
nonlinear FPE,

�P�x,t�
�t

= −
��A�x���P�x,t���

�x
+

�

�x

��P�x,t��

�P�x,t�
�x

� ,

�2.5�

with

��P�x,t�� = P�x,t�a�P�x,t�� , �2.6a�

��P�x,t�� = 	��P,R� + P�x,t�
 ���P,R�
�P

−
���P,R�

�R
��

R=P

,

�2.6b�

where we have used the fact that �P�x , t� /�x��R�x , t� /�x.
The external force A�x� is associated with a potential 	�x�
�A�x�=−d	�x� /dx , 	�x�=−�−�

x A�x��dx��, and we are as-
suming analyticity of the potential 	�x�, as well as integra-
bility of the force A�x� in all space. Furthermore, the func-
tionals ��P�x , t�� and ��P�x , t�� are supposed to be both
positive finite quantities, integrable as well as differentiable
�at least once� with respect to the probability distribution
P�x , t�; i.e., they should be at least, ��P� ,��P��C1. In ad-
dition to that, ��P�x , t�� should be also a monotonically in-
creasing functional of P�x , t�.

As usual, we assume that the probability distribution, to-
gether with its first derivative, as well as the product
A�x���P�x , t��, should all be zero at infinity,

�P�x,t��x→±� = 0, � �P�x,t�
�x

�
x→±�

= 0,

�A�x���P�x,t���x→±� = 0 �∀ t� . �2.7�

The conditions above guarantee the preservation of the nor-
malization for the probability distribution, i.e., if for a given
time t0 one has that �−�

� dx P�x , t0�=1, then a simple integra-
tion of Eq. �2.5� with respect to the variable x yields

�

�t
�

−�

�

dx P�x,t� = − �A�x���P�x,t���−�
�

+ 
��P�x,t��
�P�x,t�

�x
�

−�

�

= 0, �2.8�

and so,

�
−�

�

dx P�x,t� = �
−�

�

dx P�x,t0� = 1 �∀ t� . �2.9�

It is important to stress that the nonlinear FPE of Eq. �2.5� is
very general and reproduces well-known FPEs of the litera-
ture. As examples, one should mention the particular cases:
�i� the linear FPE is recovered for ��P�x , t��= P�x , t� and
�=D �constant�; �ii� the nonlinear FPE that presents Tsallis
distribution as a solution �12,13�, is obtained by setting
��P�x , t��= P�x , t� and ��P�x , t��=qD�P�x , t��q−1, where q is
the well-known entropic index �27�, characteristic of the
nonextensive statistical mechanics formalism; �iii� the non-
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linear FPE derived previously from the master equation
�21–23� is recovered for ��P�x , t��= P�x , t�.

From the experimental point of view, particular cases of
the nonlinear FPE of Eq. �2.5� were shown to be important
for the description of several physical phenomena: �i� par-
ticle transport in porous media �A�x�=0, ��P�x , t��
=D�P�x , t��
, 
�R� �2� and a specific application of this
equation corresponds to a diffusion of micelles in salted wa-
ter, in which case 
=−3/2 �4�; �ii� surface growth, which
may be governed by nonlinear equations characterized by
complicated force and diffusive terms �3�.

In the next section we prove the H theorem for a system
in the presence of an external potential and following the
general type of nonlinear FPE of Eq. �2.5�.

III. H THEOREM

Herein, we will consider a general type of entropic form,
satisfying the following conditions:

S�P� = ��Q�P��, Q�P� = �
−�

�

dx g�P�x,t�� ,

g�0� = g�1� = 0,
d2g

dP2 � 0, �3.1�

where ��Q� represents a monotonically increasing outer
functional with dimensions of entropy that is supposed to
satisfy, at least, ��Q��C1, whereas the inner functional
g�P�x , t�� should be also, at least, g�P�x , t���C2 in the inter-
val 0
 P�x , t�
1 �end points excluded�. Since we are deal-
ing with a system that exchanges energy with its surround-
ing, herein represented by the potential 	�x�, it is important
to define also the free-energy functional,

F = U −
1

�
S, U = �

−�

�

dx 	�x�P�x,t� , �3.2�

where � represents a positive Lagrange multiplier.
The H theorem, for a system subject to an external poten-

tial, corresponds to a well-defined sign for the time deriva-
tive of the above free-energy functional, which we will con-
sider as �dF /dt��0. Using the definitions above,

dF

dt
=

�

�t
�−�

�

dx 	�x�P�x,t� −
1

�
��Q�P���

= �
−�

�

dx
	�x� −
1

�

d��Q�
dQ

dg�P�
dP � �P

�t
, �3.3�

where we remind one that ��Q� and d��Q� /dQ do not de-
pend on the variable x. Now, one may use the FPE of Eq.
�2.5� for the time derivative of the probability distribution;
carrying an integration by parts, and assuming the conditions
of Eq. �2.7�, one gets

dF

dt
= − �

−�

�

dx
d	�x�
dx

��P� + ��P�
�P

�x
�

�
d	�x�
dx

−
1

�

d��Q�
dQ

d2g�P�
dP2

�P

�x
� . �3.4�

In most of the cases, one is interested in verifying the H
theorem by using a well-defined FPE, together with particu-
lar entropic forms, in such a way that some of the quantities,
��Q�, ��P�, ��P�, and d2g�P� /dP2, are previously defined
�see, e.g., Refs. �18,35��. Herein, we follow a more general
approach, i.e., we assume that Eqs. �2.5�, �2.7�, �3.1�, and
�3.2� are satisfied, and then, we impose the condition

−
1

�

d��Q�
dQ

d2g�P�
dP2 =

��P�
��P�

. �3.5�

Using this condition, Eq. �3.4� may be written as

dF

dt
= − �

−�

�

dx ��P�
d	�x�
dx

+
��P�
��P�

�P

�x
�2

� 0, �3.6�

and we remind one that ��P� is a positive, monotonically
increasing functional of P�x , t�.

It should be stressed that Eq. �3.5� expresses an important
relation involving quantities of the FPE and possible entropic
forms, for the case of a system in the presence of an external
potential. It leads to a correspondence between whole fami-
lies of FPEs, defined in terms of the functionals ��P� and
��P�, with a single entropic form. Therefore, it allows the
calculation of the entropic form associated with a given class
of FPEs; on the other hand, one may also start by consider-
ing a given entropic form and then find the class of FPEs
associated with it. In fact, since the FPE is a phenomenologi-
cal equation that specifies the dynamical evolution associated
with a given physical system, Eq. �3.5� may be useful in the
identification of the entropic form associated with such a
system. In particular, one may identify entropic forms asso-
ciated with some anomalous systems, exhibiting unusual be-
havior that are appropriately described by nonlinear FPEs,
like the one of Eq. �2.5�. Within the present approach, the
relation of Eq. �3.5� should hold for the H theorem to be
valid; even though the relation of Eq. �3.5� may not be
unique, we shall argue its relevance in what follows.

First of all, let us show that at equilibrium, Eq. �3.5� is
equivalent to the maximum-entropy principle. For that, we
introduce the functional

I�P�x,t�� = ��Q�P�� + �
1 − �
−�

�

dx P�x,t��
+ �
U − �

−�

�

dx 	�x�P�x,t�� , �3.7�

where � and � are Lagrange multipliers. Then, one has that
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� dI�P�
dP

�
P=Peq�x�

= 0 ⇒ � d��Q�
dQ

dg�P�
dP

�
P=Peq�x�

− � − �	�x�

= 0, �3.8�

where Peq�x� represents the equilibrium probability distribu-
tion.

From the general FPE of Eq. �2.5�, one gets that, at equi-
librium,

A�x� =
��Peq�
��Peq�

dPeq�x�
dx

, �3.9�

which, after integration, yields

	0 − 	�x� = �
x0

x

dx
��Peq�
��Peq�

dPeq�x�
dx

= �
Peq�x0�

Peq�x� ��Peq�x���
��Peq�x���

dPeq�x�� , �3.10�

where 	0�	�x0� is a constant. Integrating Eq. �3.5�, at equi-
librium,

1

�
�d��Q�

dQ

dg�P�
dP

�
Peq�x�

= 	�x� + C1, �3.11�

where we have used Eq. �3.10�, and C1 is a constant resulting
from the above integration. One notices that the equation
above is equivalent to the one obtained from the maximum-
entropy principle �cf. Eq. �3.8��.

An important—and complementary—property required
for a functional satisfying the H theorem is that it should be
bounded from below,

F„P�x,t�… � F„Peq�x�… �∀ t� . �3.12�

Herein, we assume the presence of a unique equilibrium state
in the functional F(P�x , t�). In this case, Eq. �3.12� together
with the imposition from the H theorem, for a time-
decreasing functional F, ensure that, after a long time, the
system will always reach equilibrium. Therefore, it is suffi-
cient to prove that the requirement of Eq. �3.12� holds only
in the nearness of the global equilibrium. Let us then con-
sider,

F�P� − F�Peq� = �
−�

�

dx 	�x��P − Peq� −
1

�
���Q�P��

− ��Q�Peq��� , �3.13�

which may be expanded, near the equilibrium, up to O��P
− Peq�2�. It should be noticed that an expansion on the prob-
ability P�x , t�, near Peq�x�, implies an expansion of the func-
tional ��Q�P�� in powers of Q�P�−Q�Peq�; carrying out
such an expansion, one gets that

F�P� − F�Peq� = �
−�

�

dx
�P − Peq�
	�x� −
1

�
� d��Q�

dQ

dg�P�
dP �

Peq�x�
� +

1

2
�P − Peq�2
−

1

�
� d��Q�

dQ

d2g�P�
dP2 �

Peq�x�
��

−
1

2�
� d2��Q�

dQ2 �
Peq�x�


�
−�

�

dx� dg�P�
dP �

Peq�x�

�P − Peq��2

+ ¯ . �3.14�

For the term inside the first integral that appears multiplying �P− Peq�, one may use Eq. �3.11� in order to get an arbitrary
constant; after integration, using the normalization condition of Eq. �2.9�, this first-order term yields zero. For the term inside
the first integral that multiplies �P− Peq�2, one may use Eq. �3.5� at equilibrium, in such a way that

F�P� − F�Peq� = �
−�

�

dx� 1

2
�P − Peq�2
��P�

��P���
P=Peq�x�

−
1

2�
� d2��Q�

dQ2 �
Peq�x�


�
−�

�

dx� dg�P�
dP �

Peq�x�

�P − Peq��2

+ ¯ .

�3.15�

The equation above yields �F�P�−F�Peq���0 provided that
one uses the previously defined properties for the quantities
��P� and ��P�, and additionally, one supposes that
��d2��Q� /dQ2��Peq�x�
0.

Let us now analyze the situation of an isolated system,
i.e., 	�x�=constant; in this case, the H theorem should be
expressed in terms of the time derivative of the entropy, in
such a way that Eq. �3.4� should be replaced by
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dS�P�
dt

= − �
−�

�

dx
��P�
�P

�x
�
d��Q�

dQ

d2g�P�
dP2

�P

�x
�

= − �
−�

�

dx ��P�
d��Q�

dQ

d2g�P�
dP2 
 �P

�x
�2

� 0.

�3.16�

As expected, the proof of the H theorem for an isolated sys-
tem becomes much simpler than that for the system in the
presence of an external potential. In particular, there is no
requirement for a relation involving the parameters of the
FPE and the entropy, like the one of Eq. �3.5�; all that one
needs is a standard condition associated with the FPE, i.e.,
��P��0, the restriction d��Q� /dQ�0 for the outer func-
tional of the entropy, as well as the general restrictions of Eq.
�3.1� for the entropy.

IV. SOME FAMILIES OF FPEs AND THEIR
ASSOCIATED ENTROPIES

In this section we will explore further the correspondence
between the nonlinear FPE of Eq. �2.5� and general entropic
forms, established through Eq. �3.5�. This equation shows
clearly that there may be families of FPEs, corresponding to
the same ratio ���P� /��P��, associated with a single en-
tropic form; i.e., the same entropy may be associated with
different dynamical processes. In the following examples, we
consider classes of FPEs satisfying

��P� = a�P�b�P�, ��P� = a�P�P , �4.1�

where the functionals a�P� and b�P� are restricted by the
conditions imposed previously for the functionals ��P� and
��P�. In addition to that, in the first three examples we will
consider entropic forms characterized by ��Q�P��=Q�P�;
for these cases Eq. �3.5� becomes

d2g�P�
dP2 = − �

b�P�
P

. �4.2�

Therefore one has a freedom for choosing different forms for
the functional a�P�, leading to the same entropic form. Next,
we work out some examples.

�a� The class of FPEs associated with the Boltzmann-
Gibbs entropy: This class corresponds to the functionals
��P� and ��P� satisfying Eq. �4.1�, with b�P�=D �con-
stant�. Integrating Eq. �4.2� one gets

dg

dP
= − �D ln P + C ⇒ g�P� = − kBP ln P , �4.3�

where we have used the conditions g�0�=g�1�=0 to elimi-
nate the constant C, and set the Lagrange multiplier �
=kB /D, where kB represents the Boltzmann constant. It
should be stressed that usually one associates the Boltzmann-
Gibbs entropy with the linear FPE, which represents the sim-
plest equation within the present class. Herein we show that,
by properly defining the functionals ��P� and ��P�, one
may get nonlinear FPEs, with time-dependent solutions that
may be different from standard exponential probability dis-

tributions, but still associated with the Boltzmann-Gibbs en-
tropy. This whole family of FPEs presents the Boltzmann-
Gibbs distribution as the stationary-state solution. As a
simple example of this class, one may have the nonlinear
FPE characterized by a�P�= P� ���R� and b�P�=D �con-
stant�.

�b� The class of FPEs associated with Tsallis’ entropy: It
is important to notice that the simplest FPE of this class was
originally proposed with ��P�x , t��= P�x , t� and ��P�x , t��
= �2−q�D�P�x , t��1−q, where D is a constant �12�, however, it
is very common in the literature �24–26� to find this FPE
with the replacement 2−q→q. Herein we shall consider this
class of FPEs in such a way to satisfy Eq. �4.1�, with
b�P�x , t��=qD�P�x , t��q−1; integrating Eq. �4.2�,

g�P� = −
�D

q − 1
Pq + CP ⇒ g�P� = k

P − Pq

q − 1
, �4.4�

where we have set �=k /D �k is a constant with dimensions
of entropy� and have also used the conditions g�0�=g�1�=0
to eliminate the constant C. In Eq. �4.4� one readily recog-
nizes the entropy proposed by Tsallis �27� that depends on
the well-known entropic index q. Similarly to example �a�,
one has a whole class of FPEs, corresponding to different
choices for the functional a�P� of Eq. �4.1�, some of which
exhibit time-dependent solutions different from the ones pre-
sented in Refs. �12,13�, but all of them associated with the
entropic form of Eq. �4.4�. This whole family of FPEs pre-
sents the Tsallis distribution �also known as q exponential�
�24–26� as the stationary-state solution.

�c� The class of FPEs associated with the entropy of Refs.
�36,37�. : In this example we proceed in an inverse way with
respect to the previous two cases; i.e., we start from a given
entropic form, in order to find the class of FPEs associated
with it. Let us then consider �36,37�

g�P� = k�1 − exp�− cP� + Pg0�, �g0 = exp�− c� − 1� ,

�4.5�

where c is an arbitrary dimensionless constant, and k is a
constant with dimensions of entropy. Substituting into Eq.
�4.2�, one gets

b�P� = − DP�1 − c2 exp�− cP�� , �4.6�

where we have set D=k /�. The functional form above de-
fines the family of FPEs associated with different definitions
for the functional a�P�, all of them related to the entropic
form of Eq. �4.5�; the simplest of these equations corre-
sponds to a�P�=1.

�d� The class of FPEs associated with the Renyi entropy
�38�: Similarly to the previous example, we start from the
entropic form, in order to find the class of FPEs associated
with it. In this case we have that

��Q�P�� = k
ln Q�P�

1 − q
,

d��Q�
dQ

=
k

�1 − q�Q�P�
, g�P� = Pq,

�4.7�

where k is a constant with dimensions of entropy. It is im-
portant to stress that in order to satisfy the H theorem, en-
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tropic forms characterized by an outer functional ��Q� are
restricted to the condition that �d��Q� /dQ� should present a
sign different from the one of �d2g�P� /dP2� �as assumed in
the beginning of Sec. III�, as can be seen from simple analy-
ses of Eq. �3.5�, for the case of a system in the presence of an
external potential, or of Eq. �3.16�, for the case of an isolated
system. Substituting the functionals of Eq. �4.1� into Eq.
�3.5� one gets

−
1

�

d��Q�
dQ

d2g�P�
dP2 =

b�P�
P

, �4.8�

and using Eq. �4.7�,

b�P� =
Dq

Q�P�
Pq−1 =

DqPq−1

�
−�

�

dx Pq

, �4.9�

where we have set D=k /�. It is important to remember that
the functionals ��P� and ��P� are supposed to be both posi-
tive, for a well-defined FPE, which implies a�P� ,b�P��0
�cf. Eq. �4.1��. From Eq. �4.9� this condition is not satisfied if
q�0. Notice that this entropic form satisfies the condition
�d2��Q� /dQ2�Peq�x�
0, required by the H theorem �cf. Eq.
�3.15��, for q
1; therefore, one can assure the validity of
such an entropic form, from the physical point of view, for
the interval 0
q
1.

From the entropic forms discussed above, surely the
Boltzmann-Gibbs form represents the most common in na-
ture, being applicable for systems characterized by short-
range interactions and/or weak correlations. For these sys-
tems, such an entropy is extensive, as required by
thermodynamics. However, for strongly correlated systems,
one may have a Boltzmann-Gibbs entropy that turns out to
be nonextensive, and so, in order to match satisfactorily ther-
modynamics, one should look for other types of entropic
forms, like the ones defined above, in such a way to recover
extensivity. From these, the one proposed by Tsallis appears
as the most found in natural systems; as a typical example,
one could mention quantum spin chains, for which Tsallis
entropy is extensive for a value of q�1 �31,32�. Besides
that, several examples in the literature suggest that other en-
tropic forms �distinct from the Boltzmann-Gibbs one� should
be applicable; this is usually indicated by an analysis of the
corresponding distribution functions, which are associated to
given entropic forms, through standard entropy-
maximization procedures. Many systems exhibit some kind
of distribution that has been associated with Tsallis distribu-
tion; it is important to mention that any entropic form given
by a monotonically increasing functional of Tsallis entropy
leads to the same distribution, under maximization. As an
example, Tsallis’ and Renyi’s entropies share the same dis-
tribution; however, as we have seen above, this later entropy
is well defined only for the interval 0
q
1, leading to a
significant restriction for its applicability. As concrete ex-
amples of possible applications for Tsallis entropy, we men-
tion �i� self-gravitating systems, characterized by q
7/9
�5,39�; �ii� relaxation of two-dimensional turbulence in a
pure-electron plasma, for which q=2 �7�; �iii� anomalous dif-

fusion in an optical lattice �in this case, the value of q differs
from 1 by an amount that depends on the ratio of typical
energy parameters of the system, like the recoil energy and
the potential depth� �8�; �iv� seismic time series �q�2.98�
�40�; and �v� distribution of daily returns of financial stock
markets �e.g., SP100 �q=1.4� �41� and DJ30 �q�1.45� �42��.
Another type of one-parameter entropic form �whose corre-
sponding nonlinear FPE appears as a particular case of Eq.
�2.5� and has already been discussed in detail elsewhere �23��
seems to be appropriate for a description of some relativistic
phenomena �9�; in this case, the dimensionless entropic pa-
rameter is associated to the ratio of velocities of special rela-
tivity �v /c�. Further discussions on applications of general-
ized entropies for stellar dynamics, two-dimensional
turbulence, and bacterial populations may also be found in
Refs. �43,44�.

V. FPE FOR A MORE GENERAL
FREE-ENERGY FUNCTIONAL

In this section we will consider a slightly different FPE,
with respect to the one of Eq. �2.5�, namely,

�P�x,t�
�t

=
�

�x

��P�

�

�x
„	�x���P�…� +

�

�x

��P�

�P

�x
� ,

�5.1�

where a new functional ��P� was introduced �notice that Eq.
�2.5� is recovered for ��P�=1� that should be finite and posi-
tive definite. The interesting point about such a FPE is that it
is consistent with the definition of a “generalized internal
energy” �24–26�,

U = �
−�

�

dx 	�x���P�x,t�� , �5.2�

where we are assuming that ��P� represents a positive,
monotonically increasing functional of P�x , t�, that should be
at least ��P��C1.

Now, we take this internal energy in the free-energy func-
tional of Eq. �3.2� and consider the same entropic form of
Eq. �3.1�. Let us then prove the H theorem for such a system,
following the same steps of Sec. III; one gets that

dF

dt
=

d

dt
�−�

�

dx 	�x���P�x,t�� −
1

�
��Q�P���

= �
−�

�

dx
	�x�
d��P�

dP
−

1

�

d��Q�
dQ

dg�P�
dP

� �P

�t
.

�5.3�

Using the FPE of Eq. �5.1� and integrating by parts, one
obtains
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dF

dt
= − �

−�

�

dx
��P�
�

�x
„	�x���P�… + ��P�

�P

�x
�

�
 �

�x

	�x�

d��P�
dP

� −
1

�

d��Q�
dQ

d2g�P�
dP2

�P

�x
� .

�5.4�

The H theorem applies; i.e.,

dF

dt
= − �

−�

�

dx ��P�
 �

�x
„	�x���P�… +

��P�
��P�

�P

�x
�2

� 0,

�5.5�

provided that Eq. �3.5� holds, with an additional restriction
for the functional ��P�,

��P� =
d��P�

dP
. �5.6�

It should be mentioned that the constraint above, relating the
functional ��P� of the FPE with the quantity ��P� that ap-
pears in the definition of the generalized internal energy
�with ��P�� P� has to be introduced, in such a way to satisfy
the H theorem.

Let us now show that, at equilibrium, the condition of Eq.
�3.5� is equivalent to the maximum-entropy principle, when
one uses the FPE of Eq. �5.1�. Defining the functional

I�P�x,t�� = ��Q�P�� + �
1 − �
−�

�

dx P�x,t��
+ �
U − �

−�

�

dx 	�x���P�x,t��� �5.7�

�� and � are Lagrange multipliers� one has that

� dI�P�
dP

�
P=Peq�x�

= 0 ⇒ � d��Q�
dQ

dg�P�
dP

�
P=Peq�x�

− � − �	�x�� d��P�
dP

�
P=Peq�x�

= 0,

�5.8�

where Peq�x� represents the probability distribution at equi-
librium. Considering Eq. �5.1� at equilibrium one gets

−
�

�x
�	�x���Peq�� =

��Peq�
��Peq�

dPeq�x�
dx

, �5.9�

and after integration,

− 	�x���Peq�x�� + C = �
x0

x

dx
��Peq�
��Peq�

dPeq�x�
dx

= �
Peq�x0�

Peq�x� ��Peq�x���
��Peq�x���

dPeq�x�� ,

�5.10�

where C�	�x0���Peq�x0�� is a constant. Integrating Eq.
�3.5�, at equilibrium, and using the equation above, one gets

1

�
�d��Q�

dQ

dg�P�
dP

�
Peq�x�

= 	�x���Peq�x�� + C�

= �	�x�
d��P�

dP
�

P=Peq�x�
+ C�,

�5.11�

where we have used Eq. �5.6� and C� represents another
integration constant. The equation above is equivalent to Eq.
�5.8�, obtained from the maximum-entropy principle.

Therefore, in what concerns the H theorem, the necessary
relation involving quantities of the FPE with a general en-
tropic form and its equivalence with the maximum-entropy
principle, the FPE of Eq. �5.1� is consistent with the defini-
tion of a generalized internal energy that is sometimes used
in the context of nonextensive statistical mechanics �24–26�.

VI. CONCLUSIONS

We have proved the H theorem by using general nonlinear
Fokker-Planck equations. In order to prove the H theorem
for a system in the presence of an external potential, a rela-
tion involving terms of the Fokker-Planck equation and the
entropy of the system was proposed. In principle, one may
have classes of Fokker-Planck equations related to a single
entropic form. Since the Fokker-Planck equation is a phe-
nomenological equation that specifies the dynamical evolu-
tion associated with a given physical system, this relation
may be useful in the identification of the entropic form as-
sociated with such a system. In particular, the present ap-
proach makes it possible to identify entropic forms associ-
ated with some anomalous systems, exhibiting unusual
behavior, that are known to be appropriately described by
nonlinear Fokker-Planck equations, like the ones considered
herein. By considering a modified Fokker-Planck equation,
we have also proved the H theorem for a type of generalized
internal energy, like the one used within the nonextensive
statistical-mechanics formalism. For that, the same relation
connecting the parameters of the Fokker-Planck equation and
the corresponding entropic form had to be introduced. To our
knowledge, it is the first time that the H theorem has been
verified, for a system in the presence of an external potential,
by considering a nonlinear weight in the definition of the
internal energy. Making use of the relation mentioned, we
have calculated well-known entropic forms, associated with
given Fokker-Planck equations. In the case of the standard
Boltzmann-Gibbs entropy, apart from the simplest linear
Fokker-Planck equation, one may have a whole class of non-
linear Fokker-Planck equations, whose time-dependent prob-
ability distributions may be distinct from simple exponential
distributions, but all of them are related to this particular
entropic form; the stationary-state solution is the same as the
one of the linear Fokker-Planck equation, i.e., a Boltzmann-
Gibbs distribution. A similar behavior is verified for more
general, nonadditive, entropic forms, e.g., the Tsallis’
entropy. Although this relation involving families of
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Fokker-Planck equations and entropic forms may not be
unique, we have shown that, when considered at equilibrium,
it is equivalent to the principle of maximum entropy. The
present results suggest that behind such a relation there may
be a deep physical insight that deserves further investiga-
tions.
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